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Abstract

We extend the notion of numerical stability of finite difference approximations to include hyperbolic systems that are
first order in time and second order in space, such as those that appear in numerical relativity and, more generally, in Ham-
iltonian formulations of field theories. By analyzing the symbol of the second order system, we obtain necessary and suf-
ficient conditions for stability in a discrete norm containing one-sided difference operators. We prove stability for certain
toy models and the linearized Nagy–Ortiz–Reula formulation of Einstein’s equations.

We also find that, unlike in the fully first order case, standard discretizations of some well-posed problems lead to unsta-
ble schemes and that the Courant limits are not always simply related to the characteristic speeds of the continuum prob-
lem. Finally, we propose methods for testing stability for second order in space hyperbolic systems.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The Einstein equations consist of a set of 10 coupled non-linear second order partial differential equations.
In order to perform numerical time evolutions the fully second order system is usually written as a first order
in time system. Such systems can be evolved directly [1,2], or a further reduction from second to first spatial
order can be performed (see for example [3–6]). Whereas the theory of Cauchy problems for fully first order
systems of partial differential equations is understood, in terms of well-posedness at the continuum and the
stability of finite difference approximations, the theory of second order in space hyperbolic systems is less well
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developed. The recent improvement in the understanding of second order in space formulations of Einstein’s
equations at the continuum [7–11] has not been matched by developments concerning finite difference approx-
imations of such systems (see however [12,13]). Given that these systems have fewer variables, fewer con-
straints, and typically smaller errors (see [12] and Appendix B), it is desirable to better appreciate their
properties. Note that first order in time hyperbolic systems, which are not necessarily first order in space, also
arise naturally in Hamiltonian formulations of field theories.

The standard notion of stability for fully first order systems based on the discrete L2 norm is unsuitable for
analyzing second order in space hyperbolic systems. This can be understood by analogy with the continuum
result for the one-dimensional wave equation written in first order in time and second order in space form: ot/
(t,x) = P(t,x), otPðt; xÞ ¼ o2

x/ðt; xÞ. Consider the family of solutions /(x, t) = sin(xx) cos(xt), p(x, t) =
�x sin(xx) sin(xt) generated by the initial data /0(x) = sin(xx), p0(x) = 0. By varying x in the initial data,
the L2 norm of the solution at a fixed time t,

R 2p
0 ðj/j

2 þ jPj2Þ dx, can be made arbitrarily large with respect
to the initial data (whose norm is independent of x), thus contradicting well-posedness of the Cauchy problem
in L2 [14,15]. The introduction of the new variable, X = ox/, allows the construction of a first order system,
the Cauchy problem of which is well-posed in L2. The original second order problem can then be shown to be
well-posed in a norm containing derivatives, namely

R 2p
0
ðj/j2 þ jPj2 þ jox/j2Þ dx, which corresponds to the L2

norm of the first order reduction.
In this work, we consider linear constant coefficient Cauchy problems. We use the method of lines to

separate the time integration from the spatial discretization. We show that by reducing the discrete system
to first order in Fourier space, it is possible to determine stability in physical space with respect to a
discrete norm containing one-sided difference operators. This is done by extending the notion of a sym-
metrizer to the discrete case. We apply these techniques to problems, starting with the wave equation writ-
ten as a first order in time, second order in space system. We consider both second and fourth order
accurate discretizations. A similar but more complicated analysis is done for the Knapp–Walker–Baumg-
arte (KWB) [16] and Z1 [17] formulations of electromagnetism, and the Nagy–Ortiz–Reula (NOR) [8] for-
mulation of Einstein’s equations. We also point out stability issues related to the ADM [18] and Z4 [19]
formulations.

In Section 2, we summarize some relevant material from the literature. In Section 3, we introduce the con-
cept of a discrete symmetrizer. We also illustrate the reduction procedure to first order in Fourier space, which
can be used for obtaining energy estimates at the continuum. We introduce the analogous idea for the discrete
case, and discuss convergence. In Section 4, we apply these techniques to the systems mentioned above. We
propose methods in Section 5 for testing stability experimentally both for linear and non-linear systems.
We summarize the main results of this paper in Section 6. In Appendix A, we describe the different time inte-
gration methods that we consider, and in Appendix B, we compare numerical properties of the wave equation
written as a first order system with those of the wave equation written as a first order in time, second order in
space system. In Appendix C, we highlight differences in the constraint propagation properties between first
and second order systems.
2. Background

Well-posedness, the (local in time) existence of a unique solution which depends continuously on the prob-
lem’s data, is a fundamental requirement for the successful generation of numerical solutions approximating
the solution of a continuum problem. In this section, we review the notion of well-posedness for linear con-
stant coefficient Cauchy problems, as well as the concept of stability for finite difference approximations. We
conclude the section by providing a simple sufficient condition for stability of first order fully discrete
problems based on the properties of the symbol of the semi-discrete system, which will be extended to discreti-
zations of second order in space problems in the next section.
2.1. Constant coefficient Cauchy problems

In this work, we will be dealing with initial value (or Cauchy) problems of the form
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o

ot
uðt; xÞ ¼ P

o

ox

� �
uðt; xÞ; ð1Þ

uð0; xÞ ¼ f ðxÞ; ð2Þ
in d spatial dimensions, where x 2 Rd , u = (u(1), u(2), . . .,u(m))T and P is a linear, constant coefficient, differen-
tial operator of order p. We consider only the cases p = 1 and p = 2. Furthermore, we assume that the eigen-
values of the symbol of the differential operator, P̂ ðixÞ, which is obtained by replacing o/oxj in P(o/ox) with
ixj, for j = 1,2, . . .,d, have real part uniformly bounded from below and above. We are thus excluding para-
bolic systems, but we are allowing for systems like the wave equation written as a first order in time, second
order in space system. For simplicity we focus on solutions that are 2p-periodic in all spatial coordinate direc-
tions. Thus the initial data, f(x), is chosen so that it satisfies this property.

We consider the p = 1 case, leaving the p = 2 case for the next section. Following Definition 4.1.1 in [20] we
say that problem (1) and (2) is well-posed with respect to a norm ||Æ|| if for every smooth periodic f there is a
unique smooth spatially periodic solution and there are constants a and K, independent of f, such that for t P 0
kuðt; �Þk 6 Keatkf k. ð3Þ

Exponential growth must be allowed if one wants to treat problems with lower order terms. For first order
hyperbolic systems the L2 norm kwk2 ¼

R 2p
0

. . .
R 2p

0
jwðxÞj2 dx1 . . . dxd is usually used in (3). We will see later that

the second order systems we study in this work require the use of a different norm.
Taking f ðxÞ ¼ ð2pÞ�d=2P

xeihx;xif̂ ðxÞ the formal solution of (1) and (2) is uðt; xÞ ¼ ð2pÞ�d=2P
xeihx;xi

eP̂ðixÞt f̂ ðxÞ. It can be shown (Theorem 4.5.1 in [20]) that well-posedness in the L2 norm is equivalent to there
being constants K, a such that, for all x and for t P 0,
jeP̂ ðixÞtj 6 Keat; ð4Þ

where |A| = sup|u| = 1 |Au| is the matrix (operator) norm of a matrix A.

Well-posedness of the Cauchy problem in the L2 norm is also equivalent (Theorem 4.5.8 in [20]) to the exis-
tence of constants a, K > 0 and of Hermitian matrices ĤðxÞ satisfying,1 for every x,
K�1I 6 ĤðxÞ 6 KI ;

ĤðxÞP̂ ðixÞ þ P̂ �ðixÞĤðxÞ 6 2aĤðxÞ;
ð5Þ
where P̂ � represents the Hermitian conjugate of P̂ . The last inequality gives an energy estimate for each
Fourier mode and the estimate in physical space, Eq. (3), follows from Parseval’s relation, kuðt; �Þk2 ¼P

xjûðt;xÞj
2. Since the existence of ĤðxÞ is not affected by the addition of a constant matrix to P̂ ðixÞ (Lemma

2.3.5 in [21]), undifferentiated terms on the right-hand side of the equations can be ignored in the analysis of
well-posedness. If (5) is satisfied with Ĥ P̂ þ P̂ �Ĥ ¼ 0 then Ĥ is called a symmetrizer.

For p = 1, system (1) is said to be strongly hyperbolic if the corresponding Cauchy problem is well-posed in
the L2 norm (i.e. if ĤðxÞ exists).2 If ĤðxÞ ¼ I , the system is said to be symmetric hyperbolic. If ĤðxÞ ¼ H is
independent of x, then we say that the system is symmetrizable hyperbolic.3 In this case the change of variables
~u ¼ H 1=2u brings the system into symmetric hyperbolic form. Finally, well-posedness is not affected by the
presence of forcing (inhomogeneous) terms (Theorem 4.7.2 in [20]). For cases where such terms are present,
the estimate requires modification.

Note that, in the absence of lower order terms, whereas symmetrizable hyperbolicity guarantees the exis-
tence of a conserved energy in physical space, (u,Hu), a strongly hyperbolic system satisfies the estimate
||u(t,Æ)|| 6 K|| u(0, Æ)|| with a constant K P 1. Furthermore, in the variable coefficient case, well-posedness results
require smoothness of the symmetrizer Ĥðx; t;xÞ in all arguments [21].
o Hermitian matrices, A and B, satisfy A 6 B if and only if x*Ax 6 x*B x for every x. If a matrix ĤðxÞ satisfies K�1I 6 ĤðxÞ 6 KI
ry x, we say that ĤðxÞ is equivalent to the identity matrix.

r otu = Aioiu the symbol is P̂ ¼ ixiAi. The system is said to be weakly hyperbolic if the eigenvalues of P̂ ðixÞ are imaginary. Strong
olicity is equivalent to P̂ ðixÞ being uniformly diagonalizable with imaginary eigenvalues. We define the characteristic speeds in the

on xi to be the eigenvalues of P̂ ðixÞ divided by ix.
metrizable hyperbolic systems are often also called symmetric hyperbolic.
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2.2. Numerical stability

2.2.1. Notation

Our notation and conventions follow closely those of [20]. We introduce a spatial grid xj ¼ ðxð1Þj1
; xð2Þj2

; . . . ;
xðdÞjd
Þ ¼ ðj1h1; j2h2; . . . ; jdhdÞ, where hr = 2p/Nr and jr = 0,1, . . .,Nr � 1, and the vector-valued grid function

vj(t) approximating u(t,xj). Periodicity requires that vj = vmod(j,N). The partial derivatives in (1) are approxi-
mated using either the standard second order accurate discretization
oi ! D0i; oioj !
D0iD0j if i 6¼ j;

DþiD�i if i ¼ j

�
ð6Þ
or the standard fourth order accurate discretization
oi ! Dð4Þi � D0i 1� h2

6
DþiD�i

� �
;

oioj !
Dð4Þi Dð4Þj if i 6¼ j;

DþiD�i 1� h2

12
DþiD�i

� �
if i ¼ j;

8<:
ð7Þ
where D+vj = (vj + 1� vj)/h, D� vj = (vj� vj�1)/h, D0vj = (vj + 1 � vj� 1)/2h, and D+D�vj = (vj + 1 � 2vj + vj� 1)/h2.
The discretization of o

2
i as in (6) or (7) gives the desired order of local accuracy without requiring a larger stencil.

We then integrate the resulting system of m
Qd

r¼1N r ordinary differential equations
d

dt
vjðtÞ ¼ PvjðtÞ; ð8Þ

vjð0Þ ¼ fj; ð9Þ

where fj = f(xj), with three different time integrators. These are iterative Crank Nicholson (ICN) and third and
fourth order Runge–Kutta (3RK and 4RK) methods, which are widely used by numerical relativists (see
Appendix A for definitions). Using the fact that the operator P is linear and time independent we can write
the fully discrete system in polynomial form (see for example [20])
vnþ1
j ¼ Qvn

j ¼ PðkPÞvn
j ; ð10Þ

v0
j ¼ fj; ð11Þ
where k = kh is the time step, k is called the Courant factor, and vn
j represents the grid-function at time tn = nk.

This is an explicit, one step, scheme. For ICN we have PðxÞ ¼ 1þ 2
P3

r¼1
xr

2r, whereas for pth order Runge–
Kutta we have PðxÞ ¼

Pp
r¼0

xr

r!
.

2.2.2. Definition of stability

We recall the definition of numerical stability and discuss some necessary and sufficient conditions. The
solution of the finite difference scheme (10) and (11) is vn = Qnf. We introduce the scalar product ðu; vÞh ¼P

jhuj; vjihd , where hd ¼
Qd

i¼1hi, j = (j1, j2, . . ., jd) is a multi-index and huj; vji ¼
Pm

r¼1�u
ðrÞ
j vðrÞj . This allows us to

define a norm kvkh ¼ ðv; vÞ
1=2
h . The approximation (10) and (11) is said to be stable with respect to this norm

if there exist constants a, K, such that for all h, k, 0 < h 6 h0, 0 < k 6 k0, the estimate
kvnkh 6 Keatnkf kh ð12Þ

holds for all n such that tn = nk and all initial grid-functions f. This concept of stability is the discrete analogue
of (3). It guarantees that the solutions are bounded as h! 0. However, the schemes we consider are at most
conditionally stable. By this we mean that there exists a k0 such that the above inequality holds if and only if
the additional condition k = k/h 6 k0 is satisfied.

Theorem 5.1.2 in [20] guarantees that if the scheme (10) and (11) is stable, then the modified scheme
vnþ1
j ¼ ðQþ kRÞvn

j ; ð13Þ
v0

j ¼ fj ð14Þ
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is also stable provided that R is bounded. This will be the case when R represents constant terms (lower order
terms) in the continuum problem. Hence for a first order in space system lower order terms can be ignored
without affecting stability.

2.2.3. Convergence

Following Theorem 5.1.3 in [20], consistency and stability imply convergence. Assume that the continuum
solution u of (1) and (2) is smooth and that the scheme (10) and (11) is stable. Further assume that the scheme
and the initial data are consistent. Then, on any finite interval [0,T], the error satisfies
4 No
proble
be C5.
kvn � uð�; tnÞkh 6 Oðhp1 þ kp2Þ; ð15Þ

i.e. the solutions of the finite difference scheme converge as h! 0 to the solution of the differential equation.4

2.2.4. Fourier analysis of stability

For approximations with constant coefficients, Fourier analysis can be used to obtain necessary and sufficient
conditions for stability which can be more easily verified than the above definition. We assume that N, the number
of grid-points in each direction, is even (the odd case is discussed in Section 2.2.5). If we represent vn

j by
vn
j ¼

1

ð2pÞ
d
2

X
x

eihx;xjiv̂nðxÞ; ð16Þ
where x = (x1,x2, . . .,xd), xr = �N/2 + 1, . . .,N/2, and substitute it into the difference scheme (10) and (11),
we obtain
v̂nþ1ðxÞ ¼ Q̂ðnÞv̂nðxÞ; ð17Þ
v̂0ðxÞ ¼ f̂ ðxÞ; ð18Þ
where nr = xrh = �p + 2p/N,� p + 4p/N, . . .,+p and r = 1,2, . . .,d. The m · m matrix Q̂ðnÞ is called the ampli-

fication matrix of the scheme and is a real polynomial in P̂ , the symbol of the Fourier transformed semi-
discrete problem,
Q̂ðnÞ ¼ PðkP̂ ðnÞÞ. ð19Þ

The matrix P̂ðnÞ will play an important role in the next section. It can be readily computed from P in Eq. (8)
with the replacements
D0i !
i

h
sin ni; ð20Þ

DþiD�i ! �
4

h2
sin2 ni

2
. ð21Þ
Using the discrete Parseval’s relation
kvk2
h ¼

X
x

jv̂ðxÞj2 ð22Þ
and the fact that the solution of (17) and (18) is v̂nðxÞ ¼ Q̂nðnÞf̂ ðxÞ one can show (Theorem 5.2.1 of [20]) that a
necessary and sufficient condition for stability with respect to the ||Æ||h norm is given by
jQ̂nðnÞj 6 Keatn ð23Þ

for all h = 2p/N 6 h0, k 6 k0, n with tn = nk, and xr = �N/2 + 1, . . .,N/2, r = 1,2, . . .,d.

A much easier condition to verify is the von Neumann condition, which is only a necessary condition for
stability. It corresponds to the requirement that the eigenvalues zm(n) of Q̂ðnÞ satisfy
te that the big O in inequality (15) contains higher derivatives of the exact solution. Smoothness of the solution of the continuum
m is not required for convergence. For instance, a weaker condition for fourth order convergence (p1 = p2 = 4) is that the solution
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jzmðnÞj 6 eak ð24Þ

for all h 6 h0 and |nr| 6 p. However, when the amplification matrix can be uniformly diagonalized (i.e. there
exists a non-singular matrix T(n) that diagonalizes Q̂ðnÞ and satisfies |T(n)||T�1(n)| 6 C with C independent of
n) then the von Neumann condition is also sufficient for stability. In particular, if Q̂ is normal then it can be
unitarily (and therefore uniformly) diagonalized, |T(n)| = |T�1(n)| = 1. Since for the time integrators that we
consider Q̂ is a polynomial in P̂ ; Q̂ will be normal if P̂ is normal (as would be the case if P̂ were Hermitian
or anti-Hermitian). Note that if the von Neumann condition is violated then the scheme is not stable in
any sense.

It is possible for a discretization to be (conditionally) stable without Q̂ being normal (and hence unitarily
diagonalizable). This turns out to be the case for most systems considered in this work. In such cases we find it
convenient to introduce the norm jûjĤ ¼ hû; Ĥ ûi1=2 and proceed as follows. Let us assume that ĤðnÞ are Her-
mitian matrices such that
K�1I 6 ĤðnÞ 6 KI ;

jQ̂jĤ 6 eak;
ð25Þ
where K is a positive constant. Notice that5 jûjĤ ¼ jĤ 1=2ûj 6 K1=2jûj and K�1jAj 6 jAjĤ ¼ jĤ 1=2AĤ�1=2j 6 KjAj.
As a consequence the von Neumann condition is satisfied, rðQ̂Þ ¼ rðĤ 1=2Q̂Ĥ�1=2Þ 6 jĤ 1=2Q̂Ĥ�1=2j ¼
jQ̂jĤ 6 eak, where rðQ̂Þ denotes the spectral radius of Q̂. Stability follows from
jQ̂nj 6 KjQ̂njĤ 6 KjQ̂jnĤ 6 Keatn . ð26Þ

According to the Kreiss Matrix theorem (Section 4.9 of [14]), for a family F of m · m matrices A the following
two statements are equivalent:

(1) There exists a constant C such that for all A 2F and all positive integers n
jAnj 6 C.
(2) There is a constant K > 0 and, for each A 2F, a positive definite Hermitian matrix H with the properties
K�1I 6 H 6 KI ; A�HA 6 H .
This implies that condition (26) is also necessary for stability.

2.2.5. Number of grid points

In this review, we have assumed that the number of grid points in each direction is even. This means that no
matter how small the number of grid points is, as long as it is even, the highest frequency nr = p is present. To
allow for an odd number of grid points one must change the summation range in Eq. (16) to xr = �(N � 1)/
2, . . ., (N � 1)/2, in which case, |nr| never equals p, although it does approach this value as h! 0.

2.3. A sufficient condition for stability

We can now give a simpler sufficient condition for numerical stability. This condition applies to systems
which admit a conserved energy in Fourier space and will enable us in Section 3.2 to obtain another condition
suitable for the applications. We consider only time integrators such that
Q̂ ¼ PðkP̂ Þ. ð27Þ

The eigenvalues qm of Q̂ are related to the eigenvalues pm of P̂ by qm ¼ PðkpmÞ. This can be seen by using Shur’s
lemma. Provided that the eigenvalues pm are imaginary, the inequality |qm| 6 1 is equivalent to kpm 6 a0, where
a0 = 2 for ICN,

ffiffiffi
8
p

for 4RK,
ffiffiffi
3
p

for 3RK. Hence,
r a positive definite Hermitian matrix H, Ha (for a not necessarily an integer) is defined as S*DaS where H = S*DS and D is the
al matrix of positive real eigenvalues.
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rðkP̂ Þ 6 a0 ð28Þ

is equivalent to rðQ̂Þ 6 1. Condition (28) is called local stability on the imaginary axis in [22]. Suppose that the
time step is such that rðkP̂ Þ 6 a0. If we can find Hermitian matrices ĤðnÞ such that
K�1I 6 ĤðnÞ 6 KI ; ð29Þ
ĤðnÞP̂ ðnÞ þ P̂ ðnÞ�ĤðnÞ ¼ 0; ð30Þ
we say that ĤðnÞ is a discrete symmetrizer of P̂ ðnÞ. The matrices Ĥ 1=2P̂ Ĥ�1=2 are anti-Hermitian, hence they can
be diagonalized by unitary matrices S(n). This implies that the matrices Ĥ�1=2ðnÞSðnÞ diagonalize Q̂ðnÞ. The
inequality
jQ̂jH ¼ jĤ 1=2Q̂Ĥ�1=2j ¼ jS�1Ĥ 1=2Q̂Ĥ�1=2Sj ¼ rðQ̂Þ 6 1 ð31Þ

guarantees stability. In fact, the amplification matrix can be uniformly diagonalized by T ðnÞ ¼ Ĥ�1=2ðnÞSðnÞ.

In applications one would construct a norm (i.e., matrices ĤðnÞ satisfying (29)) which is conserved by the
Fourier transformed semi-discrete evolution equations,
d

dt
jv̂j2Ĥ ¼ hv̂; ðĤ P̂ þ P̂ �ĤÞv̂i ¼ 0. ð32Þ
This implies that condition (30) holds and ĤðnÞ is a discrete symmetrizer.
To construct Ĥ one can proceed as follows. Assume the existence of a matrix T such that T�1P̂ T ¼ K is

diagonal with imaginary elements. Then the quantity v̂�Ĥ v̂, where Ĥ ¼ T�1�DT�1 and D is a positive definite
matrix which commutes with K, is conserved by the system ot v̂ ¼ P̂ v̂. Defining the characteristic variables of P̂
to be ŵ � T�1v̂ (these are individually conserved: otjŵij2 ¼ 0), we see that to construct a conserved quantity
one can take ŵ�Dŵ. (For D = I this corresponds to adding the squared absolute values of the characteristic
variables.) For Ĥ to be a symmetrizer it remains to be established that K�1jv̂j2 6 v̂�Ĥ v̂ 6 Kjv̂j2.

3. Stability of first order in time, second order in space systems

What we have done so far applies to fully first order systems. We have shown that if inequalities (28) and
(29) and Eq. (32) hold, then the fully discrete scheme is stable and satisfies the estimate (12) with a = 0. In this
section, we show how this can be extended to second order in space systems. We first look at the continuum
problem and then investigate its standard discretization.

3.1. Well-posedness of first order in time and second order in space hyperbolic systems

It is possible for the Cauchy problem of a first order in time and second order in space system of equations
to be ill-posed in the L2 norm, but well-posed in a norm which contains additional derivatives (see Section 1).
The system is still useful; for example, a suitable finite difference approximation of the equations can be con-
vergent in the discrete L2 norm. We analyze the well-posedness of the Cauchy problem for such systems by
using the analytical tool of a reduction to first order. This will be done in Fourier space, so that the number
of additional variables being introduced is minimized [23].

Consider system (1) with p = 2 and suppose that it can be written in the form
otu ¼ Pu; u ¼
u

v

� �
;

P ¼
Aioi þ B C

Dijoioj þ Eioi þ F Gioi þ J

 !
;

ð33Þ
where the evolved variables have been split into two types. The column vector u represents those that are dif-
ferentiated twice (in space) and v represents those that are not. In P a sum over repeated indices is assumed.
Not all second order in space systems can be written in this form (for example, ut = uxx). This form is general
enough to include all the first order in time, second order in space systems that we have considered that can be
reduced to first order in space. Fourier transforming this system, we obtain
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otû ¼ P̂ û; û ¼
û

v̂

� �
;

P̂ ¼
ixAn þ B C

�x2Dnn þ ixEn þ F ixGn þ J

� �
;

ð34Þ
where Mn ” Mini and xi ” |x| ni and x ” |x|. We define the second order principal symbol to be
P̂ 0 ¼
ixAn C

�x2Dnn ixGn

� �
. ð35Þ
We now state the main result of this subsection. If there exists ĤðxÞ ¼ Ĥ �ðxÞ such that the energy û�Ĥ û is
conserved by the principal system otû ¼ P̂ 0û and Ĥ satisfies
K�1Ix 6 Ĥ 6 KIx; Ix �
x2 0

0 1

� �
; ð36Þ
where K is a positive scalar constant, then the solution of (33) satisfies the estimate
kuðt; �Þk 6 Keatkuð0; �Þk;

kuk2 �
Z
juj2 þ

Xd

i¼1

joiuj2 þ jvj2 ddx;
ð37Þ
and the problem is well-posed in this norm.6

The proof proceeds via a pseudo-differential reduction to first order [8]. This involves the introduction of a
new variable ŵ ¼ ixû. By taking a time derivative of this definition, we obtain the enlarged system in which the
second derivative of û has been replaced with a first derivative of ŵ. We reduce the order of the system as much
as possible so that any occurrence of ixû is replaced with ŵ. This particular first order reduction is
otûR ¼ P̂ RûR; ûR ¼
û

ŵ

v̂

0B@
1CA;

P̂ R ¼
B An C

0 ixAn þ B ixC

F ixDnn þ En ixGn þ J

0B@
1CA:

ð38Þ
This system is equivalent to the second order system (34) only when the auxiliary constraints
Ĉðt;xÞ � ŵðt;xÞ � ixûðt;xÞ ¼ 0 ð39Þ

are satisfied. It can be shown that otĈ ¼ BĈ so if these constraints are satisfied initially, then they are satisfied
for all time. They are said to be propagated by the first order evolution equations.

If this system admits a matrix ĤR satisfying (5), then the solutions satisfy the estimates
jûRðt;xÞj 6 KeatjûRð0;xÞj; ð40Þ

where jûRj2 � jûj2 þ jŵj2 þ jv̂j2, for arbitrary initial data and x. Specifically, the estimate holds for solutions
which satisfy the auxiliary constraints and therefore correspond to solutions of the second order system.
The uniform estimate in x of
jûj2 þ x2jûj2 þ jv̂j2 ¼ jûj2 þ
Xd

i¼1

jixiûj2 þ jv̂j2 ð41Þ
implies, by Parseval’s relation, the estimate in real space
te that we made no assumptions regarding the smoothness of the matrix ĤðxÞ. In view of generalizations of this work to the
le coefficient case it may be desirable to demand that T�1�ĤT�1, where T is defined in Eq. (44), be smooth in all variables.
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kuðt; �Þk 6 Keatkuð0; �Þk;

kuk2 �
Z
juj2 þ

Xd

i¼1

joiuj2 þ jvj2 ddx:
ð42Þ
So the existence of ĤR for a first order pseudo-differential reduction implies the well-posedness of the second
order system with respect to a norm containing derivatives.

We have still to show that we can find an Ĥ R for (38). Whether or not this is the case is independent of the
lower order terms P̂ R contains. A calculation similar to Lemma 2.3.5 in [21] shows that if P̂ ðxÞ admits an Ĥ R,
then so will P̂ðxÞ þ BðxÞ, where B(x) is any matrix which satisfies |B| + |B*| 6 C for C independent of x. In
other words, the terms that are not multiplied by ix can be dropped from (38), giving the principal symbol of
the first order reduction
P̂ 0R ¼
0 0 0

0 ixAn ixC

0 ixDnn ixGn

0B@
1CA ð43Þ
without affecting the well-posedness. The principal symbols of the second order system, Eq. (35), and the first
order pseudo-differential reduction, Eq. (43), are related by
P̂ 0R ¼
0 0

0 T P̂ 0T�1

� �
; T �

ix 0

0 1

� �
. ð44Þ
(Note that T�1 does not exist for x = 0. However, in this case, P̂ 0R ¼ 0, and admits the identity as a symmet-
rizer.) By assumption, there exists ĤðxÞ ¼ Ĥ �ðxÞ such that û�Ĥ û is conserved by the principal system otû ¼
P̂ 0û and satisfies (36). This Ĥ satisfies Ĥ P̂ 0 þ P̂ 0�Ĥ ¼ 0, and it is straightforward to show that
Ĥ R �
1 0

0 T�1�ĤT�1

� �
ð45Þ
satisfies Ĥ R ¼ Ĥ �R and Ĥ RP̂ 0R þ P̂ 0�RĤ R ¼ 0. Further, by noting that T*T = Ix, using (36) one can show that ĤR

satisfies K�1I 6 Ĥ R 6 KI . Hence we have found a symmetrizer of P̂ 0R and the result has been proved.7

To construct Ĥ one can use the characteristic variables of P̂ 0, as described at the end of Section 2.3. We
would like to point out that this analysis did not require that the auxiliary constraint propagation problem
be well-posed. These constraints are merely a tool for the analysis of the system. We only need to establish
uniqueness of the solution with zero initial data for the auxiliary constraints. In the linear constant coefficient
case this result is trivial. When evolving the second order system, these constraints are identically zero at all
times. An alternative to the pseudo-differential reduction method is to perform a fully differential reduction by
introducing a new variable in physical space for each derivative (see for example [7,11]).

3.2. Stability of discretizations of first order in time and second order in space systems

We now show how the continuum analysis of the previous subsection can be extended to the fully discrete
case. The semi-discrete finite difference approximation of (33) can be written as
d

dt
v ¼ Pv; v ¼

u

v

� �
;

P ¼
AiDð1Þi þ B C

DijDð2Þij þ EiDð1Þi þ F GiDð1Þi þ J

 !
;

ð46Þ
where Dð1Þi is a discretization of the first derivative in the i direction and Dð2Þij is a discretization of the second
derivative in the i and j directions. For example, the standard second order accurate discretization would have
an also be shown that P̂ 0R is diagonalizable with the same eigenvalues as P̂ 0, plus as many zeroes as there are components of u.
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Dð1Þi ¼ D0i; Dð2Þij ¼
D0iD0j; i 6¼ j;

DþiD�i; i ¼ j:

�
ð47Þ
The principal symbol of the semi-discrete system is
P̂ 0 ¼
AiD̂ð1Þi C

DijD̂ð2Þij GiD̂ð1Þi

 !
; ð48Þ
where
D̂ð1Þi ¼
i

h
sin ni; D̂ð2Þij ¼

� 1
h2 sin ni sin nj; i 6¼ j;

� 4
h2 sin2 ni

2
; i ¼ j

(
ð49Þ
for the standard second order discretization. The pseudo-discrete first order reduction is obtained by defining
ŵ � iXû; X2 ¼
Xd

i¼1

jD̂þij2. ð50Þ
The reduced system is
d

dt
v̂R ¼ P̂ Rv̂R; v̂R ¼

û

ŵ

v̂

0B@
1CA; ð51Þ

P̂ R ¼
B ðiXÞ�1AiD̂ð1Þi C

0 AiD̂ð1Þi þ B iXC

F ðiXÞ�1ðDijD̂ð2Þij þ EiD̂ð1Þi Þ GiD̂ð1Þi þ J

0BB@
1CCA. ð52Þ
We can show that the discrete auxiliary constraint is preserved by the time integrator. Define c ” (�iXI I 0), so
that the constraint is cv̂R ¼ ŵ� iXû ¼ 0. Since cP̂ Rv̂R ¼ Bcv̂R, we have that cv̂R ¼ 0 implies cP̂ Rv̂R ¼ 0 and
hence cP̂ n

Rv̂R ¼ 0 and cPðkP̂ Þv̂R ¼ 0. Now consider evolving the reduced system with a polynomial time inte-
grator; i.e. v̂nþ1

R ¼ PðkP̂ RÞv̂n
R. If the auxiliary constraints are satisfied on one time step, then they are satisfied

on the next as well, since cv̂n
R ¼ 0 implies cv̂nþ1

R ¼ cPðkP̂ Þv̂n
R ¼ 0. Hence there is a one-to-one correspondence

between solutions of the second order fully discrete system and those of the constraint-satisfying reduced sys-
tem. Note that we have used the fact that the time integrator is a polynomial in P̂ R, as is the case for systems
with constant coefficients. This result can be extended to the variable coefficient case, where one would have to
perform the reduction to first order in physical space by introducing the gridfunctions X(i) = D+iu.

Making use of Theorem 5.1.2 of [20], the terms which correspond to the continuum lower order terms can
be dropped from P̂ R without affecting the stability of the fully discrete system, provided that ðiXÞ�1D̂ð1Þi , kD̂ð1Þi

and kX�1D̂ð2Þij are bounded. This guarantees that the assumptions of the theorem are satisfied. This is true for
the second and fourth order accurate standard discretizations.

The result for stability of the fully discrete problem is analogous to that for well-posedness at the contin-
uum. If there exists ĤðnÞ ¼ Ĥ �ðnÞ such that the energy v̂�Ĥ v̂ is conserved by the semi-discrete principal system
otv̂ ¼ P̂ 0v̂ and Ĥ satisfies
K�1IX 6 Ĥ 6 KIX; IX �
X2 0

0 1

 !
; ð53Þ
where K is a positive scalar constant, then it is possible to construct a discrete symmetrizer for the first order
reduction with no lower order terms. So if, in addition, the principal symbol P̂ 0 satisfies rðkP̂ 0Þ 6 a0, the fully
discrete system (including lower order terms) is stable with respect to the norm
kvk2
h;Dþ
� kuk2

h þ kvk
2
h þ

Xd

i¼1

kDþiuk2
h; ð54Þ
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i.e. the solution satisfies the estimate
kvnkh;Dþ
6 Keatnkv0kh;Dþ

. ð55Þ
Again, Ĥ can be constructed from the characteristic variables of P̂ 0, as described at the end of Section 2.3.
Note that the matrix P̂ R is not defined for X = 0. However, this does not cause any difficulties in the linear
constant coefficient case. One can write the space of solutions as a direct sum consisting of constant functions
plus a space of solutions with non-trivial X, and treat each subspace independently.

3.3. Convergence

We briefly discuss convergence of the solution of the discrete problem to that of the continuum problem.
We assume that (55) holds. Inserting the exact smooth solution u(t,x) into the scheme vn + 1 = Qvn generates
truncation errors as inhomogeneous terms in the difference approximation and in the initial data. The error
grid-function wn

j � vn
j � uðtn; xjÞ satisfies
wnþ1
j ¼ Qwn

j þ ~Fn
j ; ð56Þ

w0
j ¼ ~f j; ð57Þ
where ~Fn
j ¼ /ðtn; xjÞOðkp1 þ hp2Þ, and ~f j ¼ wðxjÞOðhp3Þ with / smooth. The temporal accuracy of the scheme is

p1 and the spatial accuracy is p2. The discrete version of Duhamel’s principle (see Theorem 5.1.1 in [20]) gives
the estimate
kwnkh;Dþ
6 Keatn kw0kh;Dþ

þ k
Xn�1

r¼0

k~Frkh;Dþ

 !
6 Oðkp1 þ hp2Þ; ð58Þ
provided that the initial data satisfies kw0kh;Dþ
6 Oðhp2Þ. If w is smooth this condition is satisfied and, in par-

ticular, it is satisfied for exact initial data.
Inequality (58) implies convergence with respect to the discrete L2 norm, kwkh 6 kwkh;Dþ

, despite the scheme
being unstable with respect to this norm. Note that pth order convergence is obtained, with p = min(p1,p2)
assuming k = kh, even though the norm contains first order accurate one-sided difference operators.
4. Applications

In the following subsections, we apply the theoretical tools discussed in Section 3 to different systems. We
start with a first order strongly hyperbolic system with no lower order terms. We then investigate three second
order in space systems: the wave equation, a generalization of the KWB formulation of Maxwell’s equations
and the NOR formulation of Einstein’s equations. We show that the clear correspondence between strong
hyperbolicity and the existence of a discrete symmetrizer which occurs in first order systems with no lower
order terms is lost when the standard discretization is used for second order in space systems. Similarly,
the simple correspondence between characteristic speeds and the von Neumann condition, Eq. (63), does
not hold for second order in space systems. It is convenient to define the following quantities,
v2
q ¼

Xd

i¼1

sinq ni

2
; v2 ¼

Xd

i¼1

sin2 ni; X ¼ 2v2

h
. ð59Þ
Note that the maximum of vq and v is
ffiffiffi
d
p

. We also recall that when the eigenvalues of P̂ are imaginary,
rðkP̂ Þ 6 a0 () rðQ̂Þ 6 1; ð60Þ

where a0 = 2 for ICN,

ffiffiffi
8
p

for 4RK and
ffiffiffi
3
p

for 3RK.

4.1. Stability of first order strongly hyperbolic systems

Our first application is a constant coefficient first order system in d spatial dimensions
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ou
ot
¼
Xd

i¼1

Ai ou
oxi

; ð61Þ
where u is a vector valued function of the space–time coordinates. We assume that the system is strongly
hyperbolic and that it admits a symmetrizer, i.e., there exists a matrix ĤðxÞ in Fourier space, such that
ĤðxÞP̂ ðixÞ þ P̂ �ðixÞĤðxÞ ¼ 0, where P̂ ðixÞ ¼ i

Pd
i¼1xiA

i. The discrete symbol associated with the standard
second order accurate discretization of this system is
P̂ hðnÞ ¼
i

h

Xd

i¼1

Ai sin ni ¼ P̂ ðih�1 sin nÞ;
where we attached the subscript h to the discrete symbol to distinguish it from that of the continuum. We now
construct the discrete symmetrizer
Ĥ hðnÞ � Ĥðh�1 sin nÞ. ð62Þ
Conditions (29) and (30) are satisfied and condition (28) is sufficient for stability. The latter becomes
rðkP̂Þ ¼ kvrðAðnÞÞ 6 a0, where AðnÞ ¼

Pd
i¼1niA

i, ni = v�1 sinni, so that
Pd

i¼1n2
i ¼ 1. Since this inequality

must hold for all ni, and the quantity v reaches its maximum value
ffiffiffi
d
p

at ni = ±p/2, we obtain the stability
condition
k 6
a0

rðAðnÞÞ
ffiffiffi
d
p . ð63Þ
In the symmetrizable hyperbolic case one can take the discrete symmetrizer to be the same as that of the con-
tinuum (which, by definition, is independent of x)
Ĥ hðnÞ ¼ H . ð64Þ

This analysis of first order strongly hyperbolic systems shows that if the characteristic speeds depend neither
on the direction nor on the dimensionality of the problem, i.e., if r(A(n)) depends neither on n nor on d, then
the Courant limit has a 1=

ffiffiffi
d
p

dependence. In addition, when the second order accurate centered difference
operator D0 is used to approximate the spatial derivatives, a Courant limit violation would manifest itself
as a rapid growth of the mid high frequency mode jnij ¼ p

2
� 1:571. This mode is present if N is a multiple

of 4. A similar analysis shows that in the fourth order accurate case the situation differs. The Courant limit
is 1.372 times smaller than (63) and above this limit the most rapid growth occurs at a slightly higher
frequency, |ni| = 2arctan(61/2/(4 � 61/2))1/2 � 1.797. See also Appendix B.

4.2. First order in time and second order in space wave equation

In this section, we discuss the stability properties of an approximation of the d-dimensional wave equation
written as a first order in time and second order in space system
ot/ðt; xÞ ¼ Pðt; xÞ; ð65Þ

otPðt; xÞ ¼
Xd

i¼1

o
2
i /ðt; xÞ. ð66Þ
In Section 1 we pointed out that the Cauchy problem for this system is not well-posed in L2. One can expect
that a direct application of definition (12), which is based on the discrete L2 norm, to a scheme approximating
(65) and (66) would lead to the conclusion that the scheme is unstable. The first order reduction, however, is
well-posed in L2 (it is symmetric hyperbolic), hence the second order system satisfies an energy estimate with
respect to
kuð�; tÞk2 ¼
Z
j/ðx; tÞj2 þ jPðx; tÞj2 þ

Xd

i¼1

joi/ðx; tÞj2 ddx. ð67Þ
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In this section, we show stability for the standard discretization of this system, both by the pseudo-discrete
reduction method given in Section 3.2, and by a direct discrete reduction in physical space. The two methods
give equivalent results.

Following the method of lines, we first discretize space and leave time continuous,
d

dt
/jðtÞ ¼ PjðtÞ; ð68Þ

d

dt
PjðtÞ ¼

Xd

i¼1

DþiD�i/jðtÞ. ð69Þ
Using the technique described in Section 3.2, we see that the (principal) symbol of the second order semi-
discrete problem
P̂ ¼
0 1

�X2 0

� �
; T�1 ¼

iX 1

�iX 1

� �
ð70Þ
has purely imaginary eigenvalues ±iX. The matrix T diagonalizes P̂ . The sum of the squared moduli of the
characteristic variables gives the conserved energy (here D = 1/2I)
v̂�ðT�1Þ�DT�1v̂ � jiX/̂j2 þ jP̂j2 ¼ X2j/̂j2 þ jP̂j2. ð71Þ

By taking K = 1 in (53) we see that we have numerical stability with respect to the discrete norm
kvk2
h;Dþ
¼
X

j

ð/2
j þP2

j þ
Xd

i¼1

ðDþi/jÞ
2Þhd ; ð72Þ
provided that the von Neumann condition
k 6 a0=ð2
ffiffiffi
d
p
Þ; ð73Þ
which follows from rðkP̂ Þ ¼ kX ¼ 2kv2 6 a0, is satisfied.
We now illustrate a different method for proving stability of this system. A discrete reduction to first order

can be performed before going to Fourier space. We introduce the quantities
X ðiÞj ¼ Dþi/j ð74Þ
and obtain the reduced system
d

dt
/jðtÞ ¼ PjðtÞ; ð75Þ

d

dt
PjðtÞ ¼

Xd

i¼1

D�iX
ðiÞ
j ðtÞ; ð76Þ

d

dt
X ðiÞj ðtÞ ¼ DþiPjðtÞ. ð77Þ
Notice that only if Eq. (74) is identically satisfied is the reduced system equivalent to the original one. It is
important to check whether the evolution equations (75)–(77) are compatible with this requirement. Let

CðiÞj ðtÞ � X ðiÞj � Dþi/j. If we prescribe initial data such that CðiÞj ð0Þ ¼ 0, then at later times CðiÞj ðtÞ ¼ 0. This
is a consequence of the fact that
d

dt
CðiÞj ðtÞ ¼

d

dt
ðX ðiÞj ðtÞ � Dþi/jðtÞÞ ¼ 0. ð78Þ
There is a one-to-one correspondence between solutions of (68), (69) and those of (74)–(77). Furthermore, one
can check that the time integrator does not spoil the propagation of the constraints.

Ignoring lower order terms, the symbol associated with the reduced system (75)–(77) is anti-Hermitian,
therefore Eq. (30) is satisfied with Ĥ ¼ 1. The non-trivial eigenvalues of P̂ are ±iX, the same as those of
the original system (68) and (69). This proves that (73) is a necessary and sufficient condition for stability with
respect to the discrete norm (72).
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This specific discrete reduction to first order, and the pseudo-discrete reduction to first order described in
Section 3.2 give equivalent results.

4.2.1. Fourth order accuracy
In hyperbolic problems a fourth order accurate spatial discretization requires significantly fewer grid-points

per wavelength for a given tolerance error (see [20] and Appendix B). The stability proof for the fourth order
accurate discretization of the d-dimensional wave equation
d

dt
/jðtÞ ¼ PjðtÞ; ð79Þ

d

dt
PjðtÞ ¼

Xd

i¼1

DþiD�i 1� h2

12
DþiD�i

� �
/jðtÞ ð80Þ
is similar to the second order accurate case. The discrete symbol and diagonalizing matrix are
P̂ ¼
0 1

�D2 0

� �
; T�1 ¼

iD 1

�iD 1

� �
; ð81Þ
where D2 ¼ 4
h2

Pd
i¼1 sin2 ni

2
ð1þ 1

3
sin2 ni

2
Þ has purely imaginary eigenvalues ±iD. Taking D = 1/2I we get the

conserved quantity
ðT�1v̂Þ�DT̂�1v̂ ¼ D2j/̂j2 þ jP̂j2. ð82Þ

Since X2

6 D2
6

4
3
X2, by taking K = 4/3 in (53) we see that we have numerical stability with respect to the

norm (72) provided that the principal symbol P̂ satisfies rðkP̂ Þ 6 a0. This gives a stability limit of k 6ffiffiffi
3
p

a0=ð4
ffiffiffi
d
p
Þ.

4.2.2. A note about the D0-norm and the D2
0 discretization

Replacing the one sided difference operators D+i with centered difference operators D0i in the norm (72)
leads to difficulties, as the D0-norm does not capture the highest frequency mode. In fact, it is possible to con-
struct a family of solutions of (68) and (69) proportional to (�1)j for which the D0-energy estimate fails. For
this purpose it is sufficient to consider /j(t) = (�1)j cos(2t/h), Pj(t) = �2/h(�1)j sin(2t/h), which gives
kvðtÞkh;D0

kvð0Þkh;D0

¼ cos2 2t
h
þ 4

h2
sin2 2t

h

� �1=2

; ð83Þ
where kvðtÞk2
h;D0
¼
P

jð/
2
j þP2

j þ ðD0/jÞ
2Þh. It it not possible to find constants K and a such that the ratio is

bounded by Keat, independently of the space step h.
It has been suggested that the use of D2

0 rather than D+D� for the second spatial derivatives may improve
the stability properties of a second order in space scheme [24,25]. To investigate this we study the wave equa-
tion in one space dimension discretized as
d

dt
/jðtÞ ¼ PjðtÞ; ð84Þ

d

dt
PjðtÞ ¼ D2

0/jðtÞ. ð85Þ
The eigenvalues of kP̂ are ±ik sinn, which shows that the von Neumann condition is satisfied as long as k 6 a0.
Both the stencil and the maximum time step compatible with the von Neumann condition are twice what they
are for the D+D� discretization. However, for a given spatial resolution the numerical speed of propagation
has an error which is four times that of the D+D� case (see Appendix B).

So far, we have only shown that the scheme is unstable if k > a0. By looking at the discrete symbol
P̂ðnÞ ¼
0 1

� 1
h2 sin2 n 0

 !
ð86Þ
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we see that there might be a problem for |n| = p. In this case the symbol is not diagonalizable. To explicitly
show that the system (84) and (85) is unstable with respect to the norm
kvk2
h;Dþ
¼
X

j

/2
j þP2

j þ ðDþ/jÞ
2

� �
h ð87Þ
it is sufficient to consider the family of initial data /j(0) = 0, Pj(0) = (�1)j, generating the solution /j

(t) = (�1)jt, Pj(t) = (�1)j. As h! 0 the ratio
kvðtÞkh;Dþ

kvð0Þkh;Dþ

¼ 1þ t2 þ 4t2

h2

� �1=2

ð88Þ
grows without bound.
Had we chosen the D0-norm, however, we would have concluded that the scheme satisfies the required

estimate. This is because this norm does not capture the highest frequency mode /j = (�1)j. A desirable
requirement of a norm is that if a scheme is stable with respect to that norm, then it will remain stable with
respect to the same norm when perturbed with lower order terms (independently of how these are discretized).
The modified problem
d

dt
/jðtÞ ¼ PjðtÞ; ð89Þ

d

dt
PjðtÞ ¼ D2

0/jðtÞ � Dþ/jðtÞ ð90Þ
admits the family of exponentially growing solutions /jðtÞ ¼ ð�1Þj expð
ffiffiffiffiffiffiffiffi
2=h

p
tÞ; PjðtÞ ¼ ð�1Þj

ffiffiffiffiffiffiffiffi
2=h

p
expð

ffiffiffiffiffiffiffiffi
2=h

p
tÞ

which leads to unbounded growth in the ratio
kvðtÞkh;D0

kvð0Þkh;D0

¼ exp

ffiffiffi
2

h

r
t

 !
. ð91Þ
If we want to be able to decide whether a scheme is stable or not just by looking at the principal part of the
discrete system, then we must conclude that the D0-energy is not a suitable energy.

We note that the requirement that stability should not depend on how lower order terms are discretized was
crucial. If we restrict ourselves to the perturbation D0/j, then the scheme is still stable with respect to the
D0-energy. If one wants to be able to discretize lower order terms freely, as we do, then one is forced to reject
the D2

0 discretization.
Clearly it is the presence of high frequency modes that makes the D2

0 discretization unstable with respect to
the D+-norm. The introduction of a mechanism that damps high frequency modes, such as artificial dissipa-
tion, may restore stability. In the system
d

dt
/j ¼ Pj � rh3ðDþD�Þ2/j;

d

dt
Pj ¼ D2

0/j � rh3ðDþD�Þ2Pj
the same family of initial data used to prove instability of (84) and (85) gives kvðtÞkh;Dþ
=kvð0Þkh;Dþ

¼
ð1þ t2 þ 4t2=h2Þ1=2e�16rt=h, which does not grow without bound.

4.3. The generalized Knapp–Walker–Baumgarte system

We now investigate more complex systems. We adopt the Einstein summation convention. We consider the
KWB formulation of Maxwell’s equations [16]
otAi ¼ �Ei; ð92Þ
otEi ¼ �o

k
okAi þ oiC; ð93Þ

otC ¼ 0; ð94Þ
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and generalize it by introducing G = C � rok Ak, giving
8 Fro
no jÂij
otAi ¼ �Ei; ð95Þ
otEi ¼ �okokAi þ roio

kAk þ oiG; ð96Þ
otG ¼ rokEk. ð97Þ
For r = 0 we recover (92)–(94) and for r = 1 we obtain the Z1 system [17], which was recently introduced as a
toy model for the Z4 formulation of general relativity (see Section 4.6). We will show that although the param-
eter r plays no role at the continuum, at the discrete level it can have a severe impact on the stability properties.

4.3.1. Continuum analysis

If we Fourier transform (95)–(97) and introduce Ĉ ¼ Ĝþ rixkÂk in place of Ĝ the system simplifies to
otÂi ¼ �Êi;

otÊi ¼ x2Âi þ ixiĈ;

otĈ ¼ 0:
The eigenvalues and characteristic variables of the symbol are
0; ŵð0Þ ¼ Ĉ;

� ix; ŵð�Þi ¼ Êi � ixÂi � x̂iĈ;
where x̂i ¼ xi=x and x2 ¼
P3

k¼1x
2
k . Note that the eigenvalues of the symbol are independent of the parameter

r. To construct a conserved energy we take the combination
EC ¼
1

2
jŵðþÞi j

2 þ 1

2
jŵð�Þi j

2 þ ajŵð0Þj2.
To keep the notation compact we omit the sums. We need to check that this conserved quantity is equivalent
to8
jûj2 ¼ jÊij2 þ x2jÂij2 þ jĜj2.
Since
EC ¼ jÊij2 þ ð1þ aÞjĈj2 þ x2jÂij2 � 2Re ixiÂiĈ
� �

;

we get
jÊij2 þ ð1þ a� e1ÞjĈj2 þ 1� 1

e1

� �
x2jÂij2 6 EC 6 jÊij2 þ ð1þ aþ e2ÞjĈj2 þ 1þ 1

e2

� �
x2jÂij2;
where we used the inequality �2Reðz1�z2Þ 6 ejz1j2 þ e�1jz2j2 for e > 0. Choosing a = 3/2, e1 ¼ e�1
2 ¼ 2 gives
K�1
1 jûj

2
C 6 EC 6 K1jûj2C;
with K1 = 3, where jûj2C ¼ jÊij2 þ x2jÂij2 þ jĈj2. Using the inequality
ð1� eÞjz1j2 þ ð1� e�1Þjz2j2 6 jz1 þ z2j2 6 ð1þ eÞjz1j2 þ ð1þ e�1Þjz2j2; ð98Þ

with e > 0, we have that for any r, jûj2C is equivalent to jûj2, i.e. K�1

2 jûj
2
C 6 jûj

2
6 K2jûj2C. We have the uniform

estimate in Fourier space
jûðtÞj2 6 K2jûðtÞj2C 6 K1K2ECðtÞ ¼ K1K2ECð0Þ 6 K2
1K2jûð0Þj2C 6 K2

1K2
2jûð0Þj

2
; ð99Þ
which implies the estimate in physical space with respect to the norm
m the results in Section 3 we only need to show that Ĥ is equivalent to Ix, see inequality (36), which in this case means that there is
2 term.
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kuk2 ¼ kAik2 þ kEik2 þ kokAik2 þ kGk2
; ð100Þ
with no restrictions on the parameter r.

4.3.2. Discrete analysis

Consider now the semi-discrete system
otAi ¼ �Ei; ð101Þ
otEi ¼ �DþkD�kAi þ rDð2Þik Ak þ D0iG; ð102Þ
otG ¼ rD0kEk; ð103Þ
where Dð2Þik is the standard second order accurate approximation of the second partial derivative. The proce-
dure is similar to that at the continuum. We Fourier transform and replace the variable Ĝ with Ĉ ¼ Ĝþ
r i

h sin nkÂk and obtain
otÂi ¼ �Êi;

otÊi ¼
4

h2
H2

i ðnÞÂi þ
i
h

sin niĈ;

otĈ ¼ 0;
where H2
i ðnÞ ¼

P3
k¼1 sin2 nk

2
� r sin4 ni

2
.

The eigenvalues of the matrix kP̂ ðnÞ and the corresponding characteristic variables are
0; ŵð0Þ ¼ Ĉ;

� 2iHiðnÞk; ŵð�Þi ¼ Êi �
2i

h
HiðnÞÂi � siðnÞĈ;
where 2siHi = sin ,ni. The requirement that rðkP̂ Þ 6 a0 imposes the restriction r 6 1 on the parameter. If this
condition is violated, then the semi-discrete scheme is unstable (and the fully discrete scheme would be uncon-
ditionally unstable). Furthermore, for r = 1, which corresponds to the Z1 system, the matrix P̂ ð�p; 0; 0Þ (cor-
responding to the highest frequency in the x direction) is not diagonalizable and one can show that the system
admits frequency dependent linearly growing solutions which violate the discrete energy estimate.

Assume r < 1. The expression
EC ¼
1

2
jŵðþÞi j

2 þ 1

2
jŵð�Þi j

2 þ ajĈj2 ¼ jÊij2 þ ðaþ s2
i ÞjĈj

2 þ 4

h2
H2

i jÂij2 � 2Re
i
h

sin niÂiĈ

� �

is conserved. We want to show that it is equivalent to jûj2 ¼ jÊij2 þ X2jÂij2 þ jĜj2.

We first show that EC is equivalent to jûj2C ¼ jÊij2 þ X2jÂij2 þ jĈj2. We distinguish now between two possi-
bilities: r 6 0 and 0 < r < 1. In either case we have that |si| 6 1. In the first case, using the inequality
v2

2 6 H2
i 6 ð1� rÞv2

2 we get
jÊij2 þ ða� e1ÞjĈj2 þ 1� 1

e1

� �
v2

2jÂij2 6 EC 6 jÊij2 þ ðaþ 1þ e2ÞjĈj2 þ
4

h2
1� r þ 1

e2

� �
v2

2jÂij2.
If we take, for example, a P 3, e1 = 2, e2 = 1/2, then there exist constants K1 and K2 such that
K1jûj2C 6 EC 6 K2jûj2C.

For the case 0 < r < 1, using the inequality ð1� rÞv2
2 6 H2

i 6 v2
2 we get
jÊij2 þ ða� e1ÞjĈj2 þ 1� r � 1

e1

� �
v2

2jÂij2 6 EC 6 jÊij2 þ ðaþ 1þ e2ÞjĈj2 þ
4

h2
1þ 1

e2

� �
v2

2jÂij2.
If we choose a > e1 > 1/(1 � r) we have the equivalence to jûj2C. On the other hand, using
1

h
j sin nkj 6 jXj; ð104Þ
one can show that the norms jûj2C and jûj2 are equivalent. This proves stability with respect to the norm
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ðkAik2
h þ kEik2

h þ kDþkAik2
h þ kGk

2
hÞ

1=2. ð105Þ
Note that the Cauchy problem for the continuum system is well-posed for all values of r, but the discrete
system is stable only for r < 1. For r 6 1/2 the von Neumann condition gives a Courant limit of k 6
a0=ð2

ffiffiffiffiffiffiffiffiffiffiffi
3� r
p

Þ. Moreover, the numerical speeds of propagation depend on r.

4.4. The Nagy–Ortiz–Reula system

The NOR formulation of Einstein’s equations linearized about Minkowski space with zero shift and den-
sitized lapse (a = det(cij)

1/2) has the form
otcij ¼ �2Kij; ð106Þ

otKij ¼ �
1

2
okokcij þ

r
2

oiojsþ oðifjÞ; ð107Þ

otfi ¼ roiK; ð108Þ
where s = dklckl. This system corresponds to the one in [10] with the choice of parameters a = b = r = 1, c = 0
and q = r + 2. It is obtained from the ADM system with densitized lapse by introducing the variables
fi = oj cij � ois, which are used in the evolution equations for the Kij variables, and adding the momentum con-
straint to the time derivative of the new variables.

4.4.1. Continuum analysis

We Fourier transform the system and introduce Ĉi ¼ f̂ i þ r
2
ixiŝ, obtaining
otĉij ¼ �2K̂ij;

otK̂ ij ¼
1

2
x2ĉij þ ixðiĈjÞ;

otĈi ¼ 0:
The eigenvalues and characteristic variables associated with the symbol are
0; ŵð0Þi ¼ Ĉi;

� ix; ŵð�Þij ¼ K̂ij �
1

2
ixĉij � x̂ðiĈjÞ:
Proceeding in the usual manner we construct a conserved quantity and show that it is equivalent to
jûj2 ¼ jK̂ijj2 þ x2jĉijj2 þ jf̂ ij2.
We have
EC ¼
1

2
jŵðþÞij j

2 þ 1

2
jŵð�Þij j

2 þ ajŵð0Þi j
2 ¼ jK̂ijj2 þ jx̂ðiĈjÞj2 þ

1

4
x2jĉijj2 �Re ixiĉijĈj

� �
þ ajĈjj2.
Since
0 6 jx̂ðiĈjÞj2 6 jx̂iĈjj2 6 jĈij2 �
x2

e1

jĉijj2 � e1jĈij2 6 �2Re ixiĉijĈj

� �
6

x2

e2

jĉijj2 þ e2jĈij2;
we obtain the equivalence with jûj2C,
jK̂ijj2 þ
1

4
1� 1

e1

� �
x2jĉijj2 þ ða� e1ÞjĈij2 6 EC 6 jK̂ijj2 þ

1

4
1þ 1

e2

� �
x2jĉijj2 þ ð1þ aþ e2ÞjĈij2;
by choosing a = 3, e1 = 2, e2 = 1. Finally, noting that jŝj2 6 3jĉijj2 one can show that jûj2C and jûj2 are
equivalent.
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4.4.2. Discrete analysis

We consider the standard second order accurate discretization of system (106)–(108). The semi-discrete
system is
otcij ¼ �2Kij; ð109Þ

otKij ¼ �
1

2
DþkD�kcij þ

r
2

Dð2Þij sþ D0ðifjÞ; ð110Þ

otfi ¼ rD0iK. ð111Þ
Taking the Fourier transform and introducing Ĉi ¼ f̂ i þ r
2

i
h sin niŝ gives
otĉij ¼ �2K̂ij;

otK̂ ij ¼
1

2
X2ĉij þ

r
2
D̂ijŝþ

i

h
sin nðiĈjÞ;

otĈi ¼ 0;
where
D̂ij ¼
0; i 6¼ j;

� 4
h2 sin4 ni

2
i ¼ j:

(

The eigenvalues of kP̂ and the corresponding characteristic variables are
0; ŵð0Þi ¼ Ĉi;

�2iHk; ŵð�Þ ¼ K̂ � i

h
Hŝ� sin ni

2H
Ĉi;

�2iv2k; ŵð�Þij ¼ K̂ij �
1

2
iXĉij �

sin nðiĈjÞ

2v2

; i 6¼ j;

ŵð�Þi ¼ eK ii �
1

2
iX~cii �

sin ni
eCi

2v2

 !TF

;

where H2 ¼ v2
2 � r

P3
k¼1r

4
i ; r4

i ¼ sin4 ni
2
; r4

i
eK ii ¼ K̂ii; r4

i ~cii ¼ ĉii; r4
i
~Ci ¼ Ĉi, and ATF

ij ¼ ðAij � dijA=3Þ.
Note that stability demands that r < 1 (q < 3). Furthermore, the von Neumann condition depends on the

value of this parameter. Explicitly, this is
k 6
a0

2 max
jni j6p
fH; v2g
and its dependence on r is illustrated in Fig. 1. This is in contrast to the fact that at the continuum r has no
influence on the characteristic speeds or the hyperbolicity of the system.

We now restrict ourselves to the case r = 0 and prove numerical stability. In this case the characteristic
variables associated with the non-trivial eigenvalues are
ŵð�Þij ¼ K̂ij �
1

2
iXĉij �

sin nðiĈjÞ

2v2

. ð112Þ
A conserved quantity is
EC ¼
1

2
jŵðþÞij j

2 þ 1

2
jŵð�Þij j

2 þ ajŵð0Þi j
2 ¼ jK̂ijj2 þ jsðiĈjÞj2 þ

X2

4
jĉijj2 �Re

i

h
sin niĉijĈj

� �
þ ajĈij2;
where 2v2si = sinni.
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Fig. 1. The von Neumann condition for the second order accurate discretization of the NOR system in 3D using 4RK as a function of the
parameter r. For r > 1 the scheme is unconditionally unstable.
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Since
jsij 6 1;

0 6 jsðiĈjÞj2 6 jsiĈjj2 6 jĈij2 �
4

e1h2
v2

2jĉijj2 � e1jĈij2

6 �2Re
i
h

sin niĉijĈj

� �
6

4

e2h2
v2

2jĉijj2 þ e2jĈij2;
we have the equivalence with jûj2C. Inequality (104) guarantees the equivalence of the latter with jûj2. This com-
pletes the proof of stability with respect to the norm
kcijk
2
h þ kKijk2

h þ kDþkcijk
2
h þ kfik2

h

� �1=2

. ð113Þ
4.5. The ADM system

With a densitized lapse function, a = det (cij)
1/2, the ADM equations linearized about the Minkowski solu-

tion in Cartesian coordinates take the form
otcij ¼ �2Kij; ð114Þ

otKij ¼ okoðicjÞk �
1

2
okokcij � oiojs. ð115Þ
The symbol P̂ ðixÞ of (114) and (115) is not diagonalizable and neither is that of its differential nor its pseudo-
differential reduction. The family of solutions in which the only non-vanishing components are c1A = sin(xx)t,
K1A = �sin(xx)/2, where A = 2,3, can be used to explicitly show instability. It gives
kuðt; �Þk
kuð0; �Þk ¼ 1þ 4t2 þ 4x2t2

� 	1=2
; ð116Þ
where ||u(t,Æ)||2 = || cij(t,Æ)||
2 + ||Kij(t,Æ)|| + || okcij(t,Æ) ||2. The ratio cannot be bounded by Keat with K and a inde-

pendent of x.
To see that the second order accurate standard discretization is unstable we take c1A = (�1)jt and

K1A = (�1)j + 1/2. As in the continuum, the ratio
kvðtÞkh;Dþ

kvð0Þkh;Dþ

¼ 1þ 4t2 þ 16
t2

h2

� �1=2

ð117Þ
cannot be bounded. We can nevertheless compute the von Neumann condition, which is given by
k 6

ffiffiffi
3
p

a0ffiffiffiffiffiffip . ð118Þ

2 7d
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In [26] stability tests were done with the non-linear version of this formulation. The domain used consisted of a
thin channel, with an even number N of grid points in one spatial direction and three grid points in the other
two directions. By taking this into account we see that modes corresponding to the frequencies n1 = p, and
n2 = n3 = 2p/3 grow exponentially if k > 0.4163. Figure 2 in [26] confirms that with a Courant factor of
k = 0.5 there is a violation of the von Neumann condition.9

Although the symbol associated with the continuum system (114) and (115) has four Jordan blocks of size
two for any x, interestingly, the symbol associated with the semi-discrete problem obtained with the standard
second order accurate discretization can have rather different properties. For Fourier modes traveling in direc-
tions parallel to the axis the continuum result still holds. However, for Fourier modes not parallel to any of the
axis, we found that the symbol may have fewer Jordan blocks. For some Fourier frequencies we even noticed
that the symbol is diagonalizable. There is no conflict between this observation and the fact that the contin-
uum problem is ill-posed. As shown at the beginning of this subsection the discrete initial value problem for
the ADM system is also ill-posed. In the limit of high resolution, h! 0 (n! 0 and x fixed), the discrete sym-
bol is a perturbation of the continuum one10
9 A o
not ca
10 No

discret
P̂ d ¼ P̂ c þOðh2Þ.

Even though for some frequencies P̂ d is diagonalizable, the characteristic variables become degenerate in the
limit h! 0, which implies that the discrete symmetrizer becomes unbounded (it is not possible to find a K,
independent of h, satisfying inequality (53)).

4.6. The Z4 system

The same family of solutions that was used to show instability of the discretized ADM equations can be
used for the standard discretization of the linearized Z4 system [19]
ota ¼ �f ðK � mHÞ;
otcij ¼ �2Kij;

otKij ¼ �oioja�
1

2
okokcij þ okoðicjÞk �

1

2
oiojsþ 2oðiZjÞ;

otH ¼
1

2
ðokolckl � okoksÞ þ okZk;

otZi ¼ okKik � oiK þ oiH;
for any values of the parameters f and m. This instability, however, is not present if the D2
0 discretization is

used as in [24], in conjunction with the D0-norm. Furthermore, it is possible that artificial dissipation may cure
this instability of the standard discretization, at least for 0 < f 6¼ 1 or 1 = f = m/2, since in this case the con-
tinuum Cauchy problem is well-posed. Note that while we use the same family of solutions that was used to
show instability for the ADM case, the two cases are very different: While the ADM instability is due to the
lack of well-posedness of the continuum equations, the problem with the Z4 system arises purely at the discrete
level, and can be traced back to the difference in structure between the principal symbols of the pseudodiffer-
ential first order reductions of the continuum and discrete equations, see Eqs. (43) and (52). For second order
in space systems diagonalizability of the discrete symbol is not implied by diagonalizability of the continuum
symbol.

The ADM and Z4 examples suggest a simple criterion that can be used to rule out certain schemes. Any
first order in time, second order in space system of PDEs which gives rise to an ill-posed problem when the
first order and mixed second order spatial derivatives are dropped will result in an unstable scheme if the stan-
dard discretization is used and no artificial dissipation is added. This is a consequence of the fact that grid
ne-dimensional von Neumann analysis gives the limit (118) with d = 1 and a0 = 2, which corresponds to 0.655. However, this would
pture the fact that there could be exponentially growing modes with non-trivial dependence in the two thin directions.
te that in general by perturbing a non-diagonalizable matrix one obtains a diagonalizable matrix, so the diagonalizability of the
e ADM symbol for some frequencies should not be so surprising.
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modes with the highest frequency belong to the kernel of the D0 operator. Although the D2
0 discretization gives

stable schemes with respect to the D0-norm, provided that the continuum problem is well-posed, it suffers from
the limitations described in Section 4.2.2.

5. Testing stability

When dealing with variable coefficient or non-linear problems it can be difficult, if not impossible, to prove
stability with respect to a certain norm. Numerical experiments are often the only option. Given a discretiza-
tion of the linear initial value problem (1) and (2), a stability test should be aimed at establishing the existence
of the constants a and K, independent of the initial data and for all h 6 h0 (and possibly k 6 k0 h), by com-
puting the ratio between a suitable discrete norm at time-step tn = nk and its initial value,
kvnk
kv0k 6 Keatn . ð119Þ
Although it is not possible to infer stability by examining a finite number of numerical experiments (one would
have to explore the entire set h 6 h0 that appears in the definition of stability), it is usually not difficult to spot
a trend of behavior as the resolution is increased. To ensure that a wide range of frequencies is excited, random
initial data can be used [27], as no smoothness assumptions are used in the definition of stability.

In the examples of first order in time, second order in space hyperbolic systems for which we are able to
determine stability, we use a norm which is the discrete version of the continuum one. The derivatives are
approximated using the one-sided operators D+ (or, equivalently, D�) rather than D0. For the NOR system,
for example, we use the square root of the expression
X3

i;j¼1

kcijk
2
h þ

X3

i;j¼1

kKijk2
h þ

X3

k;i;j¼1

kDþkcijk
2
h þ

X3

i¼1

kfik2
h.
If, as we vary the initial data and the resolution, the experiments indicate that the constants a and K in (119)
exist, then one would conclude that the scheme appears to be stable. If not, the scheme appears to be unstable.

In the non-linear case, if the problem has a sufficiently smooth solution u0, then to first approximation the
error equation can be linearized about u0 and convergence follows if the linearized equation is stable (Section
5.5 in [20]). Establishing stability experimentally using the linearized equations would not be very practical.
However, convergence to a known exact solution can be tested directly and it avoids many complications.
Rather than testing for stability, one could test convergence in a more demanding way: initial data can be cho-
sen which is not smooth, but is accurate to the correct order in the appropriate norm. For instance, for the
NOR system, one would use the square root of
X3

i;j¼1

kdcijk
2
h þ

X3

i;j¼1

kdKijk2
h þ

X3

k;i;j¼1

kDþkðdcijÞk
2
h þ

X3

i¼1

kdfik2
h;
where dv = v � u0, and one could add random noise to the initial data with amplitude hp for the Kij and fi vari-
ables and hp + 1 for the cij variables. The scheme is convergent around the solution u0 if the D+-norm of the
error at time T is of order hp. In particular, this implies that for a convergent scheme the discrete L2 norm
of the error is of order hp if the D+-norm of the initial error is of order hp.

Finally, we note that the notion of robust stability introduced in [27] does not imply nor follows from the
concept of numerical stability investigated in this paper.

5.1. Numerical tests

We have performed numerical tests to complement the analytical stability results of Section 4.
For each run, the numerical grid has dimensions 50q · 4 · 4, where q = 1,2,4,8 parameterizes the resolu-

tion, and we impose periodic boundary conditions. The coordinate domain is x,y,z 2 [�0.5,0.5). The time
integrator is RK4 with Courant factor k = 0.5. We choose random noise of order unity as initial data (except
for the Z4 tests, see below) so that many discrete Fourier modes are present in the initial data. Empirically, we
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find that using smooth initial data in the constant coefficient problems of this paper can make it difficult to
observe an instability. This was also noticed in the non-linear case in [28].

Fig. 2 shows the results for the ADM system. The apparent trend is that as the resolution is increased, and
higher frequency Fourier modes are present in the initial data, the ratio of the D+-norm of the solution to its
initial value at any given time increases. It appears that there is no K,a such that this quantity can be bounded
by a function Keatn , and this indicates that the system is unstable.

In Fig. 3, we show the results of the stability test for the linearized NOR system. The results suggest that the
ratio of the D+-norm of the solution to its initial value remains bounded, and hence that the system is stable.
This reflects the analytic result that we proved in Section 4.

Showing the instability of the Z4 system was more complicated. In this case, it was not sufficient to use
random initial data of order unity in all variables. When this was attempted, the ratio of the D+-norm to
its initial value remained bounded. In order to numerically demonstrate the instability, we used knowledge
of the exact solution that violates the estimate. Random data of order unity was given to the variables K22

and K33 and the remaining variables were set to zero. The test results for the linearized Z4 system are shown
in Fig. 4, and confirm that this system is unstable.

When artificial dissipation with r = 0.02 is used, the linearized Z4 system tested with the same initial data
shows no sign of instability. See Fig. 5.

The example of the Z4 system shows that numerical testing of stability is not always straightforward, and
that schemes which appear stable for simple test cases may in fact be unstable. All tests were done using the
standard second order accurate discretization.
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Fig. 2. Linearized ADM stability test.
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Fig. 3. Linearized NOR stability test, r = 0.
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Fig. 5. Linearized Z4 stability test with dissipation r = 0.02, f = 1, m = 2. Initial data consists of random values in K22 and K33, and all
other variables are zero.
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6. Discussion

In this work, we extended the notion of numerical stability of finite difference approximations to include
hyperbolic systems that are first order in time and second order in space. We considered the standard discreti-
zation of the wave equation, a generalization of the KWB formulation of electromagnetism and the NOR for-
mulation of Einstein’s equations linearized about the Minkowski solution. By analyzing the symbol of the
second order system, and constructing a discrete symmetrizer, we were able to prove stability in a discrete norm
containing one-sided difference operators, provided that the von Neumann condition is satisfied. Consistency
and stability with respect to the D+-norm imply convergence with respect to the discrete L2 norm. We also found
that in some cases (r P 1 in the NOR and generalized KWB systems, and Z4) standard discretizations of well-
posed continuum problems can lead to unconditionally unstable schemes. This is closely related to the instability
of the fully second order shifted wave equation investigated in [29], but our examples contain no shift terms.

Our analysis of discretizations of first order in time hyperbolic systems shows that in the first order in space
case there is a clear correspondence between strong hyperbolicity and numerical stability, and between char-
acteristic speeds and Courant limits. See inequality (63) and Eq. (64). In the second order in space case, on the
other hand, the mixing of D± and D0 operators breaks this correspondence. To restore the correspondence one
could use the D2

0 discretization, however, as discussed in Section 4.2.2, this can lead to difficulties.
In Section 4.6, we propose a simple criterion that can be used to rule out certain schemes when the standard

discretization is used and no artificial dissipation is added. This criterion detects schemes in which the highest
frequency mode grows faster as the resolution is increased.
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We also discuss stability tests for second order in space systems. These tests should be aimed at establishing
the existence, for sufficiently small h, of the constants K and a that appear in the definition of stability with
respect to the D+-norm. In the non-linear case the situation is more complicated. In this case we suggest, when
an exact smooth solution of the continuum problem is available, to do convergence tests with initial data given
by that of the continuum problem plus random noise of order hp with respect to the D+-norm (see Section 5).

Although our analysis was restricted to the constant coefficient case, we expect that for the variable coef-
ficient case generalizations of results similar to those presented in Section 6.6 of [20] for first order hyperbolic
systems, where artificial dissipation plays an important role, might apply.
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Appendix A. Time integrators

In this work, we restrict our attention to the following three time integrators: third and fourth order
Runge–Kutta, and iterative Crank–Nicholson [30]. Given a system of ordinary differential equations, dy/
dt = f(t,y(t)), these integrators are defined as

3RK
k1 ¼ kf ðtn; ynÞ;
k2 ¼ kf ðtn þ k=2; yn þ k1=2Þ;
k3 ¼ kf ðtn þ 3k=4; yn þ 3k2=4Þ;
ynþ1 ¼ yn þ ð2k1 þ 3k2 þ 4k3Þ=9:
4RK
k1 ¼ kf ðtn; ynÞ;
k2 ¼ kf ðtn þ k=2; yn þ k1=2Þ;
k3 ¼ kf ðtn þ k=2; yn þ k2=2Þ;
k4 ¼ kf ðtn þ k; yn þ k3Þ;
ynþ1 ¼ yn þ ðk1 þ 2k2 þ 2k3 þ k4Þ=6:
ICN
k1 ¼ kf ðtn; ynÞ;
k2 ¼ kf ðtn þ k=2; yn þ k1=2Þ;
k3 ¼ kf ðtn þ k=2; yn þ k2=2Þ;
ynþ1 ¼ yn þ k3:
Appendix B. Some numerical properties of first and second order systems

In this section, we assume that the time integrator is one of those discussed in Appendix A. We consider
standard second and fourth order accurate discretizations of the following two toy model problems
ut ¼ ux; ðB:1Þ

and
/t ¼ P; Pt ¼ /xx. ðB:2Þ
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Eq. (B.1) arises in the full reduction to first order of /tt = /xx, while (B.2) represents its reduction in time. If we
denote by k(n) an eigenvalue of the discrete symbol, the corresponding phase and group velocities are given by
Fig. B
advect
referre
vp ¼ i
kðnÞ
x

;

vg ¼ i
d

dx
kðnÞ;
where n = xh. In the following table we compute the numerical phase velocities, vp, group velocities, vg, the
Courant limits (C.l.), the frequencies of undamped modes (u.m.) and of the first unstable mode (f.u.m.) for the
two systems. The numerical phase and group velocities are plotted in Fig. B.1 as a function of n.
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.1. The phase (top) and group (bottom) velocities for the second (left) and fourth (right) order standard approximation of the
ive Eq. (B.1) (red) and the wave Eq. (B.2) (green). (For interpretation of the references to color in this figure legend, the reader is
d to the web version of this article.)
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In the table we used D2 ¼ 1þ 1
3
sin2 n

2
. The exact continuum phase and group velocity is 1. The Taylor

expansion of the numerical velocities gives an idea of the magnitude of the error, provided that enough
grid-points per wave length are used. The table shows that in the second order accurate case the phase error
for the wave equation is 4 times smaller than for the advective equation, and that this improvement in accu-
racy is even stronger for the fourth order accurate discretization.

Furthermore, the standard discretizations of fully first order hyperbolic systems have numerical phase
velocities that vanish at the highest frequencies and numerical group velocities with the opposite sign to the
continuum one. In numerical relativity simulations involving black holes which make use of the excision tech-
nique to handle the singularity one can expect to see numerical high frequency solutions escaping from the
black hole, if a first order formulation combined with the standard discretization is used, unless artificial
dissipation is added to the scheme.

Finally, whereas for (B.1) the transition from second order accuracy to fourth order implies the reduction
of the Courant limit by a factor of 1.372, for the second order in space system (B.2), this transition requires a
Courant limit 2=

ffiffiffi
3
p
� 1:155 times smaller. This indicates that there is an even higher gain in going to fourth

order accuracy for second order in space formulations.
Second order accurate
 Fourth order accurate
Advective
 Wave
 Advective
 Wave
vp

sin n

n � 1� n2

6 þOðn4Þ
 2
n sin n

2 � 1� n2

24þOðn4Þ
 sin n
n ð1þ 2

3 sin2 n
2Þ � 1� n4

30þOðn6Þ
 2
n sin n

2D � 1� n4

180þOðn6Þ

vg
 cos n � 1� n2

2 þOðn4Þ
 cos n
2 � 1� n2

8 þOðn4Þ
 1� 8
3 sin4 n

2 � 1� n4

6 þOðn6Þ
 cos n
2ð1þ 2

3 sin2 n
2Þ=D � 1� n4

36þOðn6Þffiffip

C.l.
 a0
 a0/2
 a0/1.372
 3

4 a0 � a0=2:309
u.m.
 0,p
 0
 0,p � �
 0
f.u.m.
 �p
2 � �1:571
 p
 �2 arctan 61=4ffiffiffiffiffiffiffiffiffi

4�
ffiffi
6
pp � �1:797
 p
Appendix C. Discrete constraint propagation

When simulating systems such as Maxwell’s or Einstein’s equations, one has to take into account that the data
has to satisfy initial data constraints. The evolution equations guarantee that if these constraints are satisfied ini-
tially, then they will be satisfied at later times. In this appendix, we show that even in the constant coefficient case,
when using standard discretizations of second order in space systems, the discrete constraints do not propagate
exactly. Initial data which satisfy the discrete constraints do not lead to constraint satisfying solutions.

As an example, we consider the ADM Eqs. (114) and (115) with constraints
C � 1

2
ðoiojcij � oioisÞ ¼ 0; Ci � ojKij � oiK ¼ 0.
For simplicity we confine ourselves to solutions which depend only on one space coordinate. The discretized
constraints are
C � � 1

2
DþD�cAA ¼ 0; C1 � �D0KAA ¼ 0;

CA � D0K1A ¼ 0;
where A = 2,3.
The time derivative of the first constraint cannot be expressed in terms of finite difference combinations of

the constraints
d

dt
C ¼ DþD�KAA 6¼ �D0C1.
This is to be contrasted with the fact that in the constant coefficient case, the discrete constraints of a first
order reduction would propagate as in the continuum, with partial derivatives replaced by D0 operators.
Furthermore, this issue would not be present if one used D2

0 to approximate the second derivatives.
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